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RCSA-Based Method for Tool
Frequency Response Function
Identification Under Operational
Conditions Without Using
Noncontact Sensor
The stability lobe diagrams predicted using the tool frequency response function (FRF)
at the idle state usually have discrepancies compared with the actual stability cutting
boundary. These discrepancies can be attributed to the effect of spindle rotating on the
tool FRFs which are difficult to measure at the rotating state. This paper proposes a new
tool FRF identification method without using noncontact sensor for the rotating state of
the spindle. In this method, the FRFs with impact applied on smooth rotating tool and
vibration response tested on spindle head are measured for two tools of different lengths
clamped in spindle–holder assembly. Based on those FRFs, an inverse receptance cou-
pling substructure analysis (RCSA) algorithm is developed to identify the FRFs of
spindle–holder–partial tool assembly. A finite-element modeling (FEM) simulation is per-
formed to verify the validity of inverse RCSA algorithm. The tool point FRFs at the spin-
dle rotating state are obtained by coupling the FRFs of the spindle–holder–partial tool
and the other partial tool. The effects of spindle rotational speed on tool point FRFs are
investigated. The cutting experiment demonstrates that this method can accurately iden-
tify the tool point FRFs and predict cutting stability region under spindle rotating state.
[DOI: 10.1115/1.4035418]
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1 Introduction

Chatter has significantly negative effect on productivity and
quality guarantee of parts in machining applications. Stability
analysis based on tool frequency response function (FRF) is a crit-
ical method to avoid chatter vibrations during cutting [1,2].
According to the stability lobe diagrams, the optimized cutting
parameters, such as spindle speed and cutting depth, can be
selected to improve material removal rate and surface finish.

The methods used to produce stability lobe diagrams require
knowledge of the tool point FRFs which typically obtained using
impact testing at the spindle idle state. However, the stability lobe
diagrams predicted using the tool FRF at the idle state usually
have discrepancies compared with the actual stability cutting
boundary [3,4]. One major reason is the effect of the spindle rotat-
ing state on the tool point FRFs [3,5]. Because spindle rotating
causes gyroscopic moments and centrifugal forces increasing, this

then influences the dynamics of the spindle. In recent years, many
scholars have proposed various methods to study the machine
dynamics under operational conditions and demonstrated the
speed-varying dynamics of spindles. Tounsi and Otho [6] obtained
a pulselike cutting force on tool point by interrupted cutting of a
narrow workpiece width and single tooth milling operations.
€Ozsahin et al. [7] used the workpiece with random surface profile
to produce random cutting forces. And the tool point–holder cross
FRF is identified using the vibration response at the tool holder
with a laser vibrometer. Similarly, Li et al. [8] and Cai et al. [9]
studied the random excitation technique based on interrupted cut-
ting of a narrow workpiece step while spindle rotating randomly.
Zaghbani and Songmene [10] analyzed the spectrogram of the cut-
ting force and the acceleration signal of the nonrotative part of the
spindle on the spindle accelerating period and obtained the modal
parameters by operational modal analysis during cutting. The cut-
ting force excitation is limited by bandwidth, especially when the
spindle is rotating at high speeds and the tool has multiteeth.

In addition to the direct excitation with cutting forces, noncon-
tact excitation and measurement methods also have been studied.
Mohanty and Risen [11] used the sinusoidal harmonic frequency
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produced by shaker to excite the machines during operation. Tatar
et al. [12] excited the spindle by using active magnetic bearing
and measured the response by laser Doppler vibrometer (LDV) in
one direction and inductive displacement sensors in two orthogo-
nal directions. Moreover, Tatar and Gren [13] indicated that it is
desirable to measure the vibration on the rotating tool as close to
the flutes as possible and used laser vibrometer for milling tool
vibration measurements during cutting. Rantatalo et al. [14]
adopted magnetic excitation and inductive displacement measure-
ments of the spindle response and studied the effect of the gyro-
scopic moment and the speed-dependent bearing stiffness on the
system dynamics for different spindle speeds. Faassen et al. [15]
and Albrecht et al. [16] impacted the rotating cylinder point by
impulse hammer and measured the response by laser sensor.
Based on this method, Cao et al. [17] measured the FRFs at the
tool tip of a dummy tool without any flutes. In addition, Cheng
et al. [18] creatively combined this method and RCSA to predict
rotating tool point frequency response. Matsubara et al. [19] presented
a noncontact excitation method for evaluating the dynamic stiffness
of a rotating spindle and investigated the dynamic uncertainty and its
effect on cutting stability. The noncontact methods can directly excite
the structure and measure the response, but require expensive equip-
ment with high precision and complicated experimental setups.

In the other way, Gagnol et al. [4,20,21] elaborated a dynamic
model of a high-speed spindle–bearing system on the basis of
rotor dynamics predictions and readjusted the model with respect
to experimental modal identification. The new stability lobe dia-
grams were predicted by integrating the modeled speed-dependent
spindle transfer function in the chatter vibration stability
approach. €Ozsahin et al. [22] identified the spindle bearing
dynamics for various spindle rotational speeds and cutting forces.
And the tool point FRFs under operating conditions were deter-
mined using the identified speed-dependent bearing dynamics.
€Ozşahin et al. [3] also proposed an inverse stability solution by
using experimentally determined chatter frequency and corre-
sponding axial depth of cut to identify tool point FRFs. However,
it is more challenging to determine depth of cut at the stability
boundary accurately.

In this paper, a new identification method without using non-
contact sensor is proposed for tool point FRFs identification under
spindle rotating state. In this method, the cross FRFs with impact
applied on smooth rotating tool and vibration response tested on
spindle head are measured for two tools of different lengths
clamped in spindle–holder assembly. An inverse receptance cou-
pling substructure analysis (RCSA [23–26]) algorithm is devel-
oped to identify the FRFs of spindle–holder–partial tool assembly.
Different from the purpose of reducing the experiment times
when the combination of tool–holder is multiple in the previous
RCSA researches, this paper developed the inverse RCSA to iden-
tify the tool point FRFs under spindle rotating state using the cross
FRFs. An FEM simulation is performed to verify the validity of
inverse RCSA algorithm. The tool point FRFs under various spin-
dle rotational speeds are obtained by coupling the FRFs of the
spindle–holder–partial tool and the other partial tool. The effect of
the spindle rotating on the holder–tool dynamic behavior for dif-
ferent holder–tool stiffness is analyzed. Moreover, the effects of
spindle rotational speed on tool point FRFs and stability lobe dia-
grams are investigated. And the stability diagrams calculated
using the identified tool point FRFs under spindle rotating are
verified with cutting experiment. The comparisons of spindle
head–tool FRFs between spindle idle and rotating sate under dif-
ferent tool overhang length are analyzed.

2 Inverse RCSA Algorithm for Joint FRFs

Identification

2.1 Inverse RCSA Algorithm. For the tool mounted on the
rotating spindle, it is difficult to apply impact force on the tool
point and measure the tool point vibration. However, the smooth

part of the tool or the cylinder can be excited by impulse hammer
[15,17], and the accelerometer can measure the vibration on the
spindle head as close to the tool point as possible. The spindle
head–tool smooth part FRF also contains the effect of spindle
speed on spindle dynamic. Thus, under the spindle rotating state,
it can obtain the tool point FRF by using the spindle head–tool
smooth part FRF and RCSA.

Two tools of different lengths clamped in spindle–holder
assembly are adopted in this paper, as shown in Fig. 1. Point 1
and point 2 are located at the smooth part which can be impacted
by impulse hammer under spindle rotating state. Point 4 is the
nearest place to the tool point, and its vibration can be measured
by the accelerometer. The spindle–holder–tool assembly is
divided into two substructures: substructure A and substructure B
as shown in Fig. 1. Point 3 is the rigid coupling point between
substructures A and B.

For the spindle–holder–tool assembly, the displacement vector
at point 4 can be expressed as

XL;4 ¼ HL;41FL;1 þHL;42FL;2 þHL;43FL;3 þHL;44FL;4

XS;4 ¼ HS;41FS;1 þHS;42FS;2 þHS;43FS;3 þHS;44FS;4

(1)

where X is the displacement vector at point 4, and F is the force
vector applied on the structure at points 1, 2, 3, and 4, respec-
tively. The subscripts L and S denote the assembly with long and
short tool, respectively. HL;ij and HS;ij vectors are FRFs between
points i and j of the long and short tool assembly, respectively. It
is important to note that the FRFs HL;ij and HS;ij vectors are the
FRFs during spindle rotating, and the effect of the spindle rotating
on dynamic behavior is contained in the FRFs HL;ij and HS;ij.

Substructure A is the partial cutter without any constraint, the
displacement vectors on substructure A at point 3 can be written
as

XLA;3 ¼ HLA;31FL;1 þHLA;32FL;2 þHLA;33FLA;3

XSA;3 ¼ HSA;31FS;1 þHSA;32FS;2 þHSA;33FSA;3

(2)

where the subscript A denotes substructure A.
Similarly, the displacement vectors on substructure B at point 3

and 4 are

XLB;3

XLB;4

" #
¼

HB;33 HB;34

HB;43 HB;44

" #
FLB;3

FLB;4

" #

XSB;3

XSB;4

" #
¼

HB;33 HB;34

HB;43 HB;44

" #
FSB;3

FSB;4

" # (3)

Fig. 1 Two tools of different lengths clamped in
spindle–holder assembly and substructures
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where the subscript B denotes substructure B. The assemblies with long and short tool have the same substructure B, and the FRFs vec-
tors HB;ij are applicable to the two spindle–holder–tool assembly.

The equilibrium and compatibility conditions at the substructure A–B joint (point 3) provide the following boundary equations:

XL;3 ¼ XLA;3 ¼ XLB;3

XS;3 ¼ XSA;3 ¼ XSB;3

FL;3 ¼ FLA;3 þ FLB;3

FS;3 ¼ FSA;3 þ FSB;3

(4)

which are used in coupling substructures A and B. By considering the compatibility and equilibrium equations in Eq. (4) in displace-
ment vector expression of the spindle–holder–tool assembly and substructures A and B (Eqs. (2) and (3)), the displacement X can be
expressed as a function of FRFs and applied forces on point 1, 2, 3, and 4 as follows:

XL;4 ¼ HB;43ðHLA;33 þHB;33Þ�1
HLA;31FL;1 þHB;43ðHLA;33 þHB;33Þ�1

HLA;32FL;2

þHB;43ðHLA;33 þHB;33Þ�1
HLA;33FL;3 þ ½HB;44 �HB;43ðHLA;33 þHB;33Þ�1

HB;34�FL;4

XS;4 ¼ HB;43ðHSA;33 þHB;33Þ�1
HSA;31FS;1 þHB;43ðHSA;33 þHB;33Þ�1

HSA;32FS;2

þHB;43ðHSA;33 þHB;33Þ�1
HSA;33FS;3 þ ½HB;44 �HB;43ðHSA;33 þHB;33Þ�1

HB;34�FS;4

(5)

According to Eqs. (1) and (5), we can obtain the spindle–holder–tool assembly FRFs expressed by substructures A and B FRFs

HL;41 ¼ HB;43ðHLA;33 þHB;33Þ�1
HLA;31

HL;42 ¼ HB;43ðHLA;33 þHB;33Þ�1
HLA;32

HL;44 ¼ HB;44 �HB;43ðHLA;33 þHB;33Þ�1
HB;34

8>><
>>:

HS;41 ¼ HB;43ðHSA;33 þHB;33Þ�1
HSA;31

HS;42 ¼ HB;43ðHSA;33 þHB;33Þ�1
HSA;32

HS;44 ¼ HB;44 �HB;43ðHSA;33 þHB;33Þ�1
HB;34

8>><
>>:

(6)

In this paper, the translational and rotational degrees of the spindle–holder–tool assembly and substructures A and B at points 1, 2, 3,
and 4 are shown in Fig. 1. Each FRF contains both translation and rotational displacement elements, hence the FRFs in Eq. (6) are
expanded as

HP;ij¼
hP;ij;ff hP;ij;fM

hP;ij;Mf hP;ij;MM

� �
ðP¼ L;LA;S;SA;B i; j¼1;2;3;4Þ (7)

where the subscript ff denotes the translation displacement caused by the force, and the subscript MM denotes the rotational displace-
ment caused by the moment. Furthermore, according to reciprocity, we have hP;ij;Mf ¼ hP;ji;fM.

As mentioned above, the spindle–holder–tool assembly FRFs hL;41;ff , hL;42;ff , hL;44;ff , hS;41;ff , hS;42;ff , and hS;44;ff can be measured by
impact experiment under spindle rotating state, and we can use those FRFs as the known values and obtain the following form by substi-
tuting Eq. (7) into Eq. (6):

hL;41;ff ¼
hLA;31;ff hB;43;ff hLB;33;MM � hB;43;fMhLB;33;fMð Þ þ hLA;31;Mf hB;43;fMhLB;33;ff � hB;43;ff hLB;33;fMð Þ

hLB;33;ff hLB;33;MM � h2
LB;33;fM

hL;42;ff ¼
hLA;32;ff hB;43;ff hLB;33;MM � hB;43;fMhLB;33;fMð Þ þ hLA;32;Mf hB;43;fMhLB;33;ff � hB;43;ff hLB;33;fMð Þ

hLB;33;ff hLB;33;MM � h2
LB;33;fM

hL;44;ff ¼ hB;44;ff �
hB;43;ff hB;43;ff hLB;33;MM � hB;43;fMhLB;33;fMð Þ þ hB;43;fM hB;43;fMhLB;33;ff � hB;43;ff hLB;33;fMð Þ

hLB;33;ff hLB;33;MM � h2
LB;33;fM

8>>>>>>>>><
>>>>>>>>>:

hS;41;ff ¼
hSA;31;ff hB;43;ff hSB;33;MM � hB;43;fMhSB;33;fMð Þ þ hSA;31;Mf hB;43;fMhSB;33;ff � hB;43;ff hSB;33;fMð Þ

hSB;33;ff hSB;33;MM � h2
SB;33;fM

hS;42;ff ¼
hSA;32;ff hB;43;ff hSB;33;MM � hB;43;fMhSB;33;fMð Þ þ hSA;32;Mf hB;43;fMhSB;33;ff � hB;43;ff hSB;33;fMð Þ

hSB;33;ff hSB;33;MM � h2
SB;33;fM

hS;44;ff ¼ hB;44;ff �
hB;43;ff hB;43;ff hSB;33;MM � hB;43;fMhSB;33;fMð Þ þ hB;43;fM hB;43;fMhSB;33;ff � hB;43;ff hSB;33;fMð Þ

hSB;33;ff hSB;33;MM � h2
SB;33;fM

8>>>>>>>>><
>>>>>>>>>:

(8)

where

hLB;33;uv ¼ hLA;33;uv þ hB;33;uv

hSB;33;uv ¼ hSA;33;uv þ hB;33;uv ðu; v ¼ f ;MÞ
(9)
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The FRFs of substructure A can be evaluated from the analyti-
cal method or the finite-element model of the beam, and the
elements hP;ij;uvðP ¼ LA; SA i; j ¼ 1; 2; 3; 4 u; v ¼ f ;M Þ in
substructure A can be evaluated using a predetermined damping
ratio for the tool material. To identify the tool point FRFs, we
need to evaluate the FRF values at the joint hB;33;ff , hB;33;fM, and
hB;33;MM [23]. Besides the FRFs of substructure A, Eq. (8) has six
unknown FRFs hB;33;ff , hB;33;fM, hB;33;MM, hB;43;ff , hB;43;fM, and
hB;44;ff . Equation (8) can be rewritten as

hL;41;ff ¼ hLA;31;ff GL1 þ hLA;31;Mf GL2 ð10aÞ
hL;42;ff ¼ hLA;32;ff GL1 þ hLA;32;Mf GL2 ð10bÞ
hB;44;ff � hL;44;ff ¼ hB;43;ff GL1 þ hB;43;fMGL2 ð10cÞ

8><
>:

hS;41;ff ¼ hSA;31;ff GS1 þ hSA;31;Mf GS2 ð10dÞ
hS;42;ff ¼ hSA;32;ff GS1 þ hSA;32;Mf GS2 ð10eÞ
hB;44;ff � hS;44;ff ¼ hB;43;ff GS1 þ hB;43;fMGS2 ð10f Þ

8><
>:

(10)

where

GL1 ¼
hB;43;ff hLB;33;MM � hB;43;fMhLB;33;fMð Þ

hLB;33;ff hLB;33;MM � h2
LB;33;fM

GL2 ¼
hB;43;fMhLB;33;ff � hB;43;ff hLB;33;fMð Þ

hLB;33;ff hLB;33;MM � h2
LB;33;fM

GS1 ¼
hB;43;ff hSB;33;MM � hB;43;fMhSB;33;fMð Þ

hSB;33;ff hSB;33;MM � h2
SB;33;fM

GS2 ¼
hB;43;fMhSB;33;ff � hB;43;ff hSB;33;fMð Þ

hSB;33;ff hSB;33;MM � h2
SB;33;fM

(11)

Fig. 2 FEM models

Fig. 3 FRFs obtained by ANSYS harmonic analysis and inverse RCSA calculation
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GL1 and GL2 can be calculated by solving Eqs. (10a) and (10b),
and similarly for GS1 and GS2. Then, in order to directly solve
hB;43;ff and hB;43;fM according to Eqs. (10c) and (10f), the unknown
hB;44;ff is also measured by impact experiment. It should be noted
that the FRF hB;44;ff is measured with substructure B containing
part of the tool. Thus, the equation only includes the three
requested FRFs hB;33;ff , hB;33;fM, and hB;33;MM, which can be
obtained as

r cþ dð Þ � s bþ bð Þ
aþ jð Þ cþ dð Þ � bþ bð Þ2

¼ GL1

s aþ jð Þ � r bþ bð Þ
aþ jð Þ cþ dð Þ � bþ bð Þ2

¼ GL2

r2 gþ dð Þ � 2rs eþ bð Þ þ s2 d þ jð Þ
d þ jð Þ gþ dð Þ � eþ bð Þ2

¼ Z

(12)

where hB;44;ff � hS;44;ff ¼ Z, hB;33;ff ¼ j, hB;33;fM ¼ b,
hB;33;MM ¼ d, hB;43;ff ¼ r, hB;43;fM ¼ s, hLA;33;ff ¼ a, hLA;33;fM ¼ b,
hLA;33;MM ¼ c, hSA;33;ff ¼ d, hSA;33;fM ¼ e, and hSA;33;MM ¼ g.

Three unknown parameters j, b, and d can be got through solv-
ing Eq. (12). Finally, the tool point FRFs are identified by j, b, d,
and FRFs of substructure A using two-component RCSA [23].

The typical RCSA method uses only one cylinder or tool to
identify the joint parameters hB;33;ff , hB;33;fM, and hB;33;MM under
the idle state. However, under spindle rotating state, the acceler-
ometer can only be mounted on the spindle head which is not
rotating, which produces more unknown FRFs in RCSA equation.
Thus, this paper adopts two tools of different lengths (or cylinder)
and develops the inverse RCSA algorithm to identify the joint
parameters.

2.2 FEM Simulation Verification. In this section, FEM sim-
ulation verification for the inverse RCSA algorithm is provided.
The ANSYS models of two structures of different lengths are shown
in Fig. 2. All the FRFs of the ANSYS models can be obtained by
harmonic analysis. The centrifugal force produced by rotating
state will result in prestress in the structures, and the prestress
analysis with applied angular velocity is performed before the har-
monic analysis.

According to the model in Fig. 1, points 3 and 4 are assumed to
be as the joint point and point on spindle head, respectively.
Points 1 and 2 are the excitation points on the smooth part of tool.
Since the response on point 4 in Fig. 1 can be obtained by impact
experiment. Thus, the FRFs hL;41;ff , hL;42;ff , hL;44;ff , hS;41;ff , hS;42;ff ,
hS;44;ff , and hB;44;ff in Fig. 2 are the known parameters. Besides,
substructure A in Fig. 1 can be modeled and analyzed by ANSYS,
and thus, all the FRFs of substructure A in Fig. 2 can be realized
as the known values. The required FRFs on joint (point 3) of sub-
structure B hB;33;ff , hB;33;fM, and hB;33;MM in Fig. 2 are realized as
the unknown values and should be calculated by the known values
and inverse RCSA algorithm. Finally, the FRFs on joint (point 3)

of substructure B identified by the proposed inverse RCSA algo-
rithm are compared to that by direct ANSYS harmonic analysis.

As seen from Fig. 3, the joint FRFs identified by the proposed
inverse RCSA are compared with that analyzed by FEM which
shows good agreement. Theoretically, the FEM simulation dem-
onstrates that the proposed inverse RCSA in this paper can accu-
rately identify the joint FRFs with the condition when only the
spindle head response can be measured.

3 Experimental Identification

The proposed inverse RCSA algorithm has been confirmed by
the FEM simulation in theory. Further, proposed inverse RCSA
algorithm is applied on a machining-center GMC 1600H/2. In this
section, first, the effect of the spindle rotating on the holder–tool
dynamic behavior for different holder–tool stiffness is analyzed.
Second, variation of the tool point FRF due to the spindle rotating
state is tested.

3.1 The Effect of the Spindle Rotating on the Holder–Tool
Dynamic Behavior. During the actual cutting operations, the tool
overhang is adjusted according to the cutting condition require-
ment, however, the tool overhang change leads to the holder–tool
combination dynamic behavior variation. Thus, this study investi-
gates the effect of the spindle rotating on the holder–tool dynamic
behavior for different holder–tool stiffness by introducing differ-
ent tool overhang. The holder and tool used in experiment are
HSK A100 and four-fluted helical mill cutter with length 116 mm,
respectively. The spindle head–tool FRFs with different tool over-
hang are obtained by the impact testing. Figure 4 shows the model
impact test under spindle rotating state on the machining-center
GMC 1600H/2. It can be seen that the accelerometer is mounted
on the spindle head where it is closer to the tool point and not
rotating. The vibration signal on spindle head is acquired by a
DYTRAN acceleration sensor 3224A1, and the exciting force on
the smooth part of the tool is applied by a PCB impulse hammer
086C03. Mþp (VibRunner hardware and SMARTOFFICE software) is
used for data acquisition and modal analysis. Referring to the
impact method performed by Faassen et al. [15] and Cao et al.
[17], the impulse hammer is impacting on the smooth part of the
tool. The modal impact testing is conducted ten times in each
direction, and the FRF is averaged to reduce the impact
uncertainty.

Figure 5 gives the comparison of the FRFs with different tool
overhang under the idle state and spindle speed 5000 rpm state.
As shown in Fig. 5, it can be seen that the discrepancy appears
until the tool overhang shortening to 75 mm in x direction, how-
ever, the FRFs in y direction have no discrepancy only on the con-
dition of the tool overhang 105 mm.

€Ozşahin et al. [3] indicated that for the cases where tool mode
is dominant, the tool point FRFs are not affected by rotating
speeds. However, when the spindle mode is dominant, the tool
point FRFs show a speed-dependent behavior. For this study, the
effect of the spindle rotating state on holder–tool dynamic

Fig. 4 Impact testing for different tool overhang
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behavior depends on the stiffness of the holder–tool assembly.
When the long tool overhang results in the poor stiffness of the
holder–tool assembly, the magnitude of holder–tool mode (FRF)
is much larger than the mode variation caused by the spindle

rotating state. Therefore, the spindle rotating state has negligible
influence on the holder–tool mode. However, when the
holder–tool assembly has good stiffness with short tool overhang,
the magnitude of holder–tool mode is comparable to the mode

Fig. 5 Comparison of FRF measured under different tool overhang: (a) tool overhang length
is 105 mm, (b) tool overhang length is 95 mm, (c) tool overhang length is 85 mm, and (d) tool
overhang length is 75 mm

061009-6 / Vol. 139, JUNE 2017 Transactions of the ASME



variation caused by the spindle rotating state. And the influence of
the spindle rotating state on holder–tool mode is obvious. In the
practical machining, the stiffness of holder–tool is usually adopted
as good as possible for avoiding vibration. Thus, the influence of
the spindle rotating state should be considered in the stability pre-
diction model for the actual machining.

3.2 Tool Point FRFs Identification Under Spindle
Rotating State. Besides the four-fluted helical mill cutter, a lon-
ger smooth cylinder is used to meet the request of two tools of dif-
ferent lengths (or cylinder) in the proposed inverse RCSA
algorithm. According to the inverse RCSA algorithm described
above, the FRFs with response on spindle head should be measured
by model impact test. Figure 6 shows the model impact test under
spindle rotating state on the machining-center GMC 1600 H/2.

In this paper, the four-fluted helical mill cutter and the smooth
cylinder are used as the short and long tools, respectively. The
helix angle and flute length of the cutter are 50 deg and 42 mm,
respectively. The parameters of the cutter and cylinder are listed
in Table 1. As shown in Fig. 6, the impact points (points 1 and 2)
are located on the smooth part of the cutter.

The spindle head–tool FRFs in the x and y directions are
obtained by impact testing for different spindle speeds (0 rpm,
3000 rpm, 4000 rpm, and 5000 rpm) of the machining center, as
shown in Fig. 7. As seen from Figs. 7(a)–7(d), it can be found that
the first mode with natural frequency of 296 Hz appears in the
FRFs of cutter and cylinder in the x direction, simultaneously.
However, the second mode for the cylinder and cutter are 550 Hz
and 1980 Hz, respectively. Thus, the second mode is the mode of

the cutter and cylinder. Similarly, as seen from Figs. 7(e)–7(h),
the mode of cylinder in the y direction is 544 Hz and 546 Hz,
and the modes with 1244 Hz and 2014 Hz are the modes for cutter
in the y direction. It is observed that the mode of cylinder and cut-
ter shows a speed-dependent behavior.

As seen from Fig. 7, under different spindle speeds, obvious
deviations are observed in the FRFs hL;42;ff , hS;41;ff , and hS;42;ff ,
however, the deviations in the FRFs hL;41;ff are almost negligible.
The holder–tool mode in FRFs hL;41;ff has larger amplitude than
that in the other FRFs. According to the analysis in Sec. 3.1, the
holder–tool mode in FRFs hL;41;ff is affected by the spindle rotat-
ing negligibly.

According to the identification method proposed by this paper,
the joint FRFs hB;33;ff , hB;33;fM, and hB;33;MM can be identified by
using the FRFs of the cutter and cylinder obtained by impact test-
ing in Fig. 7 and FEM. Then, the tool point FRFs are calculated
by the RCSA method in Ref. [25]. Since the model testing can be
performed on the tool point under idle state, the tool point FRFs
of the four-fluted helical mill cutter with overhang length 75 mm
and 70 mm are used for verifying the accuracy of the identified
joint FRFs hB;33;ff , hB;33;fM, and hB;33;MM. Figure 8 shows the com-
parison of tool point FRF in the x and y directions obtained by
impact testing with that identified by the proposed method. It can
be seen that the identified FRFs are in good agreement with the
tested FRFs. On the base of the FEM simulation verification in
Sec. 2.2, the proposed method, which can identify the tool point
FRFs using the FRFs with only the spindle head response, is also
demonstrated by the impact testing under idle state.

The FRFs obtained for the different spindle rotating speeds
with the tool overhang length 75 mm are presented in Fig. 9. From
these results, it is obvious that the amplitude and frequency of the
tool point FRF under spindle speed 3000 rpm have a significant
decrease and shift compared with that under spindle idle state.
Then, the tool point FRF has a further variation with the spindle
speed increasing. The discrepancies of the tool point FRF between
spindle speed 3000 rpm, 4000 rpm, and 5000 rpm are not as signif-
icant as that between spindle speed 3000 rpm and idle state. Con-
sequently, the influence of spindle state on the tool point FRF can
be summarized in two aspects: one is the spindle rotating state
(rotating or not), and the other is the spindle rotating speed. It is
known that at high speeds, gyroscopic moments and centrifugal
forces and bearing stiffnesses cause variations of the spindle
modes [27]. In addition, the structural variation under spindle
rotating, such as drive chain change, etc., also affects the mode.
For the machining-center GMC 1600 H/2 used in this study, the
tool mode variation caused by the spindle rotating state (rotating
or not) is regarded as the result from the structural variation. And
the tool mode variation caused by the spindle speed is regarded as
the result from the gyroscopic moments and centrifugal forces,
bearing stiffnesses variation, etc. Modal parameter data can be
extracted from the identified FRF and are listed in Table 2.

4 Stability Experiment for Identified FRFs

Verification and Analysis

In order to verify the accuracy of the identified tool point FRFs
under spindle rotating state, stability prediction and cutting
experiments are performed on the machining-center GMC
1600 H/2 with the four-fluted helical mill cutter, as shown in Fig.
10. Cutting is performed on 300 M steel workpiece with 25%
radial immersion and 0.05 mm/tooth feed. The cutting force coef-
ficients, Kt ¼ 3127 MPa and Kr ¼ 1769 MPa, are calibrated by
experiment. During the experiment, a KISTLER 9257 A dyna-
mometer and an NI PXIe-4499 data-acquisition module are used
to record the force signals. The chatter stability limit is identified
using the spectrum of the force information.

As seen in Fig. 9, the identified tool point FRFs under spindle
rotating state show a speed-dependent behavior. Therefore, for
different speeds, tool point FRFs should be identified at each spin-
dle speed considered. And along the required speed range, the

Fig. 6 Impact experiments under spindle rotating state

Table 1 Parameters of the cutter and cylinder

Length
(mm)

Diameter
(mm)

Overhang
length (mm) Material

Cutter 116 16 75 Carbide alloy
Cylinder 186 16 145 Carbide alloy
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stability diagrams should be calculated for every speed. In order
to avoid the process damping effect, the stability prediction uses
the identified tool point FRFs under spindle speeds 4000 rpm and
5000 rpm.

Using the time-domain method [28] and the modal parameters
listed in Table 2, the predicted stability diagrams under spindle

speeds 4000 rpm and 5000 rpm are shown in Fig. 11. In addition,
the stability diagrams for the idle state are also shown in Fig. 11.
The stability diagrams using the identified tool point FRFs under
spindle rotating state are called modified stability. In this study, it
is noticed that the critical depth of cut of the stability boundary
increases while considering the spindle rotating state effect.

Fig. 7 FRFs tested by model impact
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Fig. 8 Comparison of tool point FRF in x and y directions obtained using impact testing with
that identified by the proposed method: (a) tool overhang length is 75 mm and (b) tool overhang
length is 70 mm

Fig. 9 Identified tool point FRFs under different spindle rotating speeds

Table 2 Comparison of the model parameters under different spindle rotating speeds

Mode 1 Mode 2

Spindle speed (rpm) Natural frequency (Hz) Damping (%) Natural frequency (Hz) Damping (%)

x–x 0 1282 2.6 2011 3.01
3000 1292 2.01 2040 2.38
4000 1272 2.05 2042 2.92
5000 1284 2.2 2042 2.74

y–y 0 1255 1.22 2032 1.25
3000 1232 1.34 2048 1.24
4000 1212 1.59 2056 0.92
5000 1183 2.78 2054 1.18
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In order to verify the stability boundary, the cutting experi-
ments are performed with spindle speeds 4000 rpm and 5000 rpm.
The cutting results are shown in Fig. 11, and the spectrum analysis
of cutting forces Fx at some parameter points (A, B, C, and D) are
shown in Fig. 12. The force spectrum in the x direction of point A
(4000 rpm and 0.8 mm) has the chatter frequencies of 2076 Hz
and 2343 Hz. On the other hand, point B (4000 rpm and 0.6 mm),
only the harmonic vibration frequencies (1067 Hz, 1333 Hz,
1867 Hz, 2133 Hz, etc.) appear, where frequencies are integral
multiples of the spindle speed frequency (4000/60¼ 66.67 Hz).
Point C (5000 rpm, 2.2 mm) is unstable due to the occurrence of
chatter frequencies (1245 Hz, 2245 Hz, 2578, etc.). Point D
(5000 rpm and 2.0 mm) is stable, and the corresponding frequen-
cies (999.9 Hz, 1250 Hz, 1333 Hz, etc.) in the spectrum are all of
the harmonic vibration frequencies.

For the cutting experiment with 4000 rpm, chatter occurred at
0.8 mm axial depth of cut. The predicted axial depth limit of cut
using stability diagrams for spindle speed 4000 rpm and idle state
is 0.65 mm and 0.3 mm, respectively. For the cutting experiment

Fig. 10 Cutting experiment

Fig. 11 (a) Stability diagrams obtained for idle state and 4000 rpm spindle speed and (b) stabil-
ity diagrams obtained for idle state and 5000 rpm spindle speed. The symbols are follows:
(1) � is a stable case and (2) * is an unstable cutting case.

Fig. 12 Cutting force spectrum of Fx at different parameter points: (a) point A (chatter), (b)
point B (stable), (c) point C (chatter), and (d) point D (stable)
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with 5000 rpm, chatter occurred at 2.2 mm axial depth of cut. The
predicted axial depth limit of cut using stability diagrams for spin-
dle speed 5000 rpm and idle state is 1.95 mm and 1.0 mm, respec-
tively. Thus, the modified stability diagrams provide more
accurate chatter predictions compared with stability diagrams
obtained using tool point FRFs at idle state.

Moreover, the cutting with 5400 rpm spindle speed is also per-
formed to check the accuracy of the modified stability diagrams at
spindle speed 5000 rpm, which are close to the actual cutting
speed 5400 rpm. It can be seen in Fig. 11(b) that chatter occurred
at 0.7 mm axial depth of cut with the predicted axial depth limit of
cut 0.72 mm. Thus, it can be concluded that, compared with stabil-
ity diagrams obtained using idle FRFs, the modified stability dia-
gram provides many accurate stability predictions not only for the
spindle speeds used in the FRFs identification but also for differ-
ent spindle speeds close to the identification region.

5 Conclusions

In this paper, a new identification method is proposed for tool
point FRFs identification under spindle rotating state. Since only
the response on the spindle head can be measured by accelerome-
ter under spindle rotating state, the cross FRFs with impact
applied on smooth rotating tool and vibration response tested on
spindle head are measured for two tools of different lengths
clamped in spindle–holder assembly. And then, an inverse RCSA
algorithm is developed to identify the FRFs of spindle–
holder–partial tool assembly. The proposed inverse RCSA algo-
rithm is verified by an FEM simulation and an experiment on the
speed idle state. Using the FRFs of spindle–holder–partial tool
assembly and the RCSA, the FRFs of the tool point under different
spindle speeds are obtained. In addition, stability prediction and
analysis during spindle rotating are performed.

The spindle head–tool FRFs test results show that the effect of
the spindle rotating state on the holder–tool dynamic behavior
depends on the stiffness of the holder–tool assembly. For the good
stiffness of holder–tool adopted in practical machining, the influ-
ence of the spindle rotating state on the holder–tool mode is obvious
and should be considered in the stability prediction for accurate
machining parameters optimization. The stability lobe diagrams
predicted by the identified tool point FRFs under spindle rotating
state show that the spindle rotating improves the stability boundary.

In addition to the success of the proposed method in tool point
FRF identification under spindle rotating state and more accurate
stability prediction at high-speed machining, an important contri-
bution of the proposed method is that requirements for expensive
equipment, complicated experimental setups, and signal process-
ing problem are eliminated. Moreover, the challenge to determine
depth of the axial depth of cut at stability boundary accurately in
the inverse stability solution method is avoided. The proposed
method only requires the traditional impact testing on two differ-
ent length cutters (or cylinder).
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